The RacGAP β2-Chimaerin Selectively Mediates Axonal Pruning in the Hippocampus
نویسندگان
چکیده
Axon pruning and synapse elimination promote neural connectivity and synaptic plasticity. Stereotyped pruning of axons that originate in the hippocampal dentate gyrus (DG) and extend along the infrapyramidal tract (IPT) occurs during postnatal murine development by neurite retraction and resembles axon repulsion. The chemorepellent Sema3F is required for IPT axon pruning, dendritic spine remodeling, and repulsion of DG axons. The signaling events that regulate IPT axon pruning are not known. We find that inhibition of the small G protein Rac1 by the Rac GTPase-activating protein (GAP) β2-Chimaerin (β2Chn) mediates Sema3F-dependent pruning. The Sema3F receptor neuropilin-2 selectively binds β2Chn, and ligand engagement activates this GAP to ultimately restrain Rac1-dependent effects on cytoskeletal reorganization. β2Chn is necessary for axon pruning both in vitro and in vivo, but it is dispensable for axon repulsion and spine remodeling. Therefore, a Npn2/β2Chn/Rac1 signaling axis distinguishes DG axon pruning from the effects of Sema3F on repulsion and dendritic spine remodeling.
منابع مشابه
Structural Mechanism for Lipid Activation of the Rac-Specific GAP, β2-Chimaerin
The lipid second messenger diacylglycerol acts by binding to the C1 domains of target proteins, which translocate to cell membranes and are allosterically activated. Here we report the crystal structure at 3.2 A resolution of one such protein, beta2-chimaerin, a GTPase-activating protein for the small GTPase Rac, in its inactive conformation. The structure shows that in the inactive state, the ...
متن کاملDevelopmental RacGAP α2-Chimaerin Signaling Is a Determinant of the Morphological Features of Dendritic Spines in Adulthood.
UNLABELLED Morphological characteristics of dendritic spines form the basis of cognitive ability. However, molecular mechanisms involved in fine-tuning of spine morphology during development are not fully understood. Moreover, it is unclear whether, and to what extent, these developmental mechanisms determine the normal adult spine morphological features. Here, we provide evidence that α2-isofo...
متن کاملA new role of the Rac-GAP β2-chimaerin in cell adhesion reveals opposite functions in breast cancer initiation and tumor progression
β2-chimaerin is a Rac1-specific negative regulator and a candidate tumor suppressor in breast cancer but its precise function in mammary tumorigenesis in vivo is unknown. Here, we study for the first time the role of β2-chimaerin in breast cancer using a mouse model and describe an unforeseen role for this protein in epithelial cell-cell adhesion. We demonstrate that expression of β2-chimaerin ...
متن کاملAssociation of a novel polymorphism of the β2-chimaerin gene (CHN2) with smoking.
OBJECTIVE The CHN2 gene encodes the β2-chimaerin, a Rac-specific guanosine-5'-triphosphatase activating protein with an important role in the establishment of functional brain circuitry by controlling axon pruning. Genetic studies suggest that the CHN2 gene harbors variants that contribute to addiction vulnerability and smoking behavior. To further evaluate the role of β2-chimaerin in nicotine ...
متن کاملp23/Tmp21 Differentially Targets the Rac-GAP β2-Chimaerin and Protein Kinase C via Their C1 Domains
The C1 domains in protein kinase C (PKC) isozymes and other signaling molecules are responsible for binding the lipid second messenger diacylglycerol and phorbol esters, and for mediating translocation to membranes. Previous studies revealed that the C1 domain in alpha- and beta-chimaerins, diacylglycerol-regulated Rac-GAPs, interacts with the endoplasmic reticulum/Golgi protein p23/Tmp21. Here...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 149 شماره
صفحات -
تاریخ انتشار 2012